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Abstract. The microscopic mechanism of the identical bands in odd-odd nucleus 194Tl and its neighbor
odd-A nuclei 193,195Tl is investigated using the particle-number–conserving (PNC) method for treating
the cranked shell model with monopole and quadrupole pairing interactions. It is found that the blocking
effect of the high-j intruder orbital plays an important role in the variation of moments of inertia (J (1)

and J (2)) with rotational frequency for the superdeformed bands and identical bands. The ω variation of
the occupation probability of each cranked orbital and the contributions to moment of inertia from each
cranked orbital are presented.

PACS. 21.60.Cs Shell model – 21.10.Re Collective levels – 27.80.+w 190 ≤ A ≤ 219

1 Introduction

The first observation of superdeformation (SD) in the
A ∼ 190 mass region was reported [1] about ten years ago.
Since then, more than 80 SD bands have been observed
in this region (see ref. [2]). The superdeformation at high
spin remains one of the most challenging topics of nuclear
structure [3]. At present, although a general understand-
ing of this phenomenon has been achieved, there are still
many open problems. For the underlying physics of the
superdeformed identical bands (IBs) (see the review [4]),
some studies [5,6] showed that there is special physics or
symmetry behind IBs, while others [7–9] suggested the
same γ-ray transition energy and the identical moment of
inertia (MoI) are due to the competition among the shell
effect (stretching effect), pairing interaction, blocking ef-
fect, rotation alignment and Coriolis anti-pairing effect.
Although a lot of theoretical work has been done based on
various models (e.g., particle-plus-core model, mean-field
approximation, symmetry-based approach, etc.) which are
successful for various aspects to study the superdeformed
nuclei, they are still far from a precise quantitative de-
scription.

In the A ∼ 190 region, for most SD bands in even-
even and odd-A nuclei, the dynamical moment of iner-
tia (J (2)) exhibits a gradual increase with the increas-
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ing rotational frequency h̄ω, which is due to the gradual
alignment of nucleons occupying high-N intruder orbitals
(originating from the i13/2 proton and j15/2 neutron sub-
shells) in the presence of the pair correlation, while in
the odd-odd nuclei, quite a good part of the moments
of inertia for SD bands keep constant. Experiments show
that there do exist systematic odd-even differences in MoI
at low spin, J (even-even) < J (odd-A) < J (odd-odd),
which is the manifestation of blocking effect on pairing.
IBs are observed both in odd-odd and even-even nuclei
with their neighbor odd-A nuclei. For the abundant ex-
perimental data, many works on the SD bands and the
identical bands have been done in even-even nuclei and
their neighbor odd-A nuclei (see, e.g., [7,8,10,11]). How-
ever, the SD bands and the identical bands in the odd-odd
nuclei and their neighbor odd-A nuclei are seldom studied.

In this paper, the identical SD bands in the odd-odd
nucleus 194Tl and its neighbor odd-A nuclei 193,195Tl are
investigated by the particle-number–conserving (PNC)
method [12,13] for treating the cranked shell model (CSM)
with monopole and quadrupole pairing interactions, in
which the particle number is conserved and the blocking
effects are taken into account strictly. The PNC method
has been used to study the normally deformed (ND) bands
in the rare-earth nuclei at low spin, in which the observed
systematics of the fluctuation in δJ/J for ND bands [14]
and the set of identical ND bands [15] can be reproduced
quite well and no free parameter is involved. A more
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Fig. 1. The cranked proton and neutron Nilsson orbitals near the Fermi surface in the A ∼ 190 region. The solid (dotted) line
stands for α = +1/2 (α = −1/2), and the intruder high-N orbitals are denoted by the bold line.

detailed information on the separate contributions to MoI
from each cranked orbital is also clearly exhibited. Re-
cently, we have made a PNC calculation for the set of the
identical SD bands in Hg isotopes and it works well [7].

In the next section, the formalism of the approach will
be briefly sketched (see ref. [13] for details). In sect. 3, the
calculated results and discussions are presented. Finally,
conclusion and remarks are given in sect. 4.

2 Formalism

The CSM Hamiltonian with pairing interactions reads as

HCSM = HSP − ωJx +HP = H0 +HP, (1)

where H0 = HSP − ωJx =
∑

i h0(ω)i, (i includes all the
valence particles), h0(ω) = hNilsson − ωjx, is the one-body
part of HCSM, HNilsson the Nilsson Hamiltonian, −ωjx the
Coriolis interaction and HP the pairing interaction includ-
ing both monopole and quadrupole pairing interactions:
HP = HP(0) +HP(2), where

HP (0) = −G0

∑
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a†ξa
†

ξ
aη aη
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with
∣

∣ξ (η)
〉

being the time-reversal state of |ξ (η)〉 and

q2 (ξ) =
√

16π/5 〈ξ| r2Y20 |ξ〉 the diagonal element of the
stretched quadrupole operator. In our calculations, h0(ω)
is firstly diagonalized to obtain the cranked Nilsson or-
bitals. Then, HCSM is diagonalized in a sufficiently large

cranked many-particle configuration (CMPC) space to ob-
tain the yrast and low-lying eigenstates.

The eigenstate of HCSM is expressed as

|ψ〉 =
∑

i

Ci |i〉 , (4)

where |i〉 denotes an occupation of particles in the cranked
orbitals and Ci is the corresponding probability ampli-
tude. The occupation probability of the cranked orbital µ
(including both signatures α = ±1/2) is

nµ =
∑

i

|Ci|
2Piµ,

Piµ =

{

1, |µ〉 is occupied in CMPC|i〉,
0, otherwise.

(5)

The angular-momentum alignment is calculated as

〈ψ| Jx |ψ〉 =
∑

i

|Ci|
2
〈i| Jx |i〉+2

∑

i<j

C∗i Cj 〈i| Jx |j〉 . (6)

Because Jx is a one-body operator, 〈ψ|Jx|ψ〉(i 6= j) does
not vanish only when |i〉 and |j〉 differ by one particle occu-
pation. After a certain permutation of creation operators,
|i〉 and |j〉 are expressed as

|i〉 = (−)Miµ |µ · · ·〉, |j〉 = (−)Mjν |ν · · ·〉, (7)

where the ellipsis stands for the same particle occupation
and (−)Miµ = ±1, (−)Miν = ±1 according to whether the
permutation is even or odd. Then the dynamical moment
of inertia of |ψ〉 is obtained:

J (2) = d 〈ψ| Jx |ψ〉 /dω =
∑

µ

j(2)(µ) +
∑

µ<ν

j(2)(µν), (8)
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Fig. 2. Experimental and calculated J (1) and J (2) of the set of identical bands in 193,194,195Tl.

where

j(2)(µ) =
d 〈µ| jx |µ〉

dω
nµ,

j(2)(µν) = 2
d 〈µ| jx |ν〉

dω

∑

i<j

(−)Miµ+MjνC∗i Cj (µ 6= ν),

with j(2)(µ) being the direct contribution to J (2) from a
particle occupying the cranked orbital µ and j(2)(µν) be-
ing the contribution from the interference between two
particles occupying the cranked orbital µ and ν which
has no counterpart in the mean-field (BCS) treatment.
We found that j(2)(µν) plays an important role for the
odd-even difference and nonadditivity in MoI [16,17]. The
expression for the kinematic moment of inertia J (1) =
〈ψ| Jx |ψ〉 /ω is similar to J (2) and can be found in [18].

3 Calculated result and discussions

In our calculation, the spin assignments of these SD bands
are taken from ref. [19], the Nilsson parameters (κ, µ) are
taken from ref. [20] (for neutron N = 6 shell, their val-
ues are shifted slightly), the deformation parameters are
ε2 = 0.46 and ε4 = 0.03. The cranked Nilsson orbitals near
the Fermi surface for the SD bands in the A ∼ 190 mass
region are shown in fig. 1. For ND bands in the rare-earth
nuclei, the pairing interaction strengths are determined by
the experimental odd-even differences in binding energies
and bandhead MoI. For SD bands in the A ∼ 190 region,
however, no experimental binding energies are available.
The effective pairing strengths are determined by fitting
the values of J (1) for 195Tl(2) from h̄ω ≈ 0.10–0.40 MeV.
The effective pairing strengths also depend on the dimen-
sion of the truncated CMPC space. In the following cal-
culation, the truncated CMPC’s energy Ec is set about

Fig. 3. Occupation probabilities nµ of each proton and neutron
cranked orbital µ near the Fermi surface. The blocked orbitals
are denoted by the dotted line.

0.65h̄ω0 (the corresponding CMPC’s space dimensions are
about 700) and 0.45h̄ω0 (the corresponding CMPC’s space
dimensions are about 1000) for proton and neutron, re-
spectively, with h̄ω0 = 41A−1/3MeV. In such a CMPC
space, the effective pairing interaction strengths (G0 for
monopole and G2 for quadrupole pairing interaction) in
unit of MeV are given as follows:

G0p = 0.3, G0n = 0.2, G2p = 0.01, G2n = 0.013 .

The experimental and calculated identical bands

{193Tl(1), 194Tl(2a)}, {193Tl(1), 194Tl(2b)},

{193Tl(1), 195Tl(1)}, {193Tl(2), 195Tl(2)}

are shown in fig. 2. For the experimental kinematic
moment of inertia J (1), we can see that the four pairs of
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Fig. 4. The separate contributions to J (1) and J (2) from neutrons and protons (J
(1)
n and J

(2)
p ).

Table 1. The configurations of the six SD bands in
193,194,195Tl.

SD band Configuration
193Tl(1, α = −1/2) (π[642]5/2, α = −1/2)

193Tl(2, α = +1/2) (π[642]5/2, α = +1/2)

194Tl(2a, α = 0) (π[642]5/2, α = −1/2)⊗ (ν[624]9/2, α = +1/2)

194Tl(2b, α = 1) (π[642]5/2, α = −1/2)⊗ (ν[624]9/2, α = −1/2)

195Tl(1, α = −1/2) (π[642]5/2, α = −1/2)

195Tl(2, α = +1/2) (π[642]5/2, α = +1/2)

identical bands display “striking similarities” in
the frequency range 0.10 < h̄ω < 0.35 MeV
for {193Tl(1),194Tl(2a)}, {193Tl(1),194Tl(2b)}, and
0.10 < h̄ω < 0.40 MeV for {193Tl(1),195Tl(1)},
{193Tl(2),195Tl(2)}. The similarities of these bands are re-
produced quite well in our calculations in the observed fre-
quency range. For the dynamical moment of inertia J (2), a
sharp increase in the experimental SD band of the 195Tl(1)
occurs at h̄ω > 0.35 MeV, while it is not obvious for
193Tl(1). However, our calculated results show this abrupt
uptrend both in 193Tl(1) and 195Tl(1) which we will ex-
plain later. For the first set of IBs, {193Tl(1),194Tl(2a)},
{193Tl(1),194Tl(2b)} and {193Tl(1),195Tl(1)} (figs. 2(a),
(b) and (c)), the blocked proton orbital is [642]5/2α =
−1/2 in the frequency range 0.10 < h̄ω < 0.35MeV.
For the second set of IBs, {193Tl(2),195Tl(2)} (fig. 2(d)),
the blocked proton orbital is [642]5/2α = +1/2 in the
frequency range 0.10 < h̄ω < 0.4 MeV.

The proton and neutron occupation probabilities nµ of
each cranked Nilsson orbital near the Fermi surface versus

rotational frequency are given in fig. 3 (the orbitals with
nµ = 0 or nµ = 2 are not shown here). The configurations
(see table 1) of all the six bands agree with the assignments
of the experimental studies [21,22].

As for the proton, the occupation probabilities in
194Tl(2a,2b) and 193Tl(1,2) are not shown here for the sim-

ilarity with that in 195Tl(1,2). As shown in fig. 3 ((a), (b)),
the blocking of individual proton high-j intruder orbital
[642]5/2 is obvious. It is known that the blocking effect
is very important when the high-j orbital near the Fermi
surface is blocked. While the [642]5/2(α = −1/2) orbital
is blocked in 195Tl(1), another high-j orbital [651]1/2(α =
−1/2) goes down with increased frequency and gets very
close to the Fermi surface at h̄ω ∼ 0.38 MeV (see fig. 1).
Thus, at h̄ω > 0.35 MeV, there is an exchange of the oc-
cupation between [642]5/2(α = −1/2) and [651]1/2(α =
−1/2) orbitals in 195Tl(1), while [642]5/2(α = +1/2) still
keeps fully occupied in 195Tl(2). The calculated sharp in-
creases of J (2)’s for 193Tl(1), 194Tl(2a,2b) and 195Tl(1)
occurring at h̄ω > 0.35 MeV are due to the large contribu-
tions from the high-j intruder orbital [651]1/2(α = −1/2).
This is the reason why a sharp increase occurs in 195Tl(1)
but a downturn occurs in 195Tl(2). It is also the case oc-
curring in 193Tl(1) and 193Tl(2). In experiment, there is
no obvious uptrend occurring in 193Tl(1). Considering the
same configurations of the 193Tl(1) and 195Tl(1) and the
explanations given above, we would like to persist in our
conclusion. Our results will be tested by the farther ex-
perimental data extended to the higher frequency range.

As for the neutron, there are no blocked neutron or-
bitals in 193Tl and 195Tl. The occupation probabilities in
193Tl are not shown here since they are similar to that
in 195Tl, except that the exceeded two neutrons in 195Tl
partially occupied the [512]5/2 orbital (see fig. 3(d)). For
the same reason, we just display the occupation probabil-
ities in 194Tl(2a) (fig. 3(c)). The blocking effect is exhib-
ited clearly by the neutron occupation probabilities. The
blocked orbital is the high-Ω orbital ([624]9/2(α = +1/2))
in 194Tl(2a) and the corresponding Coriolis response is
very small. Thus the occupation probabilities of this or-
bital keep constant (nµ = 1) up to rather high h̄ω and
the contributions to the moment of inertia coming from
the blocked orbital [624]9/2(α = ±1/2) in 194Tl(2a) are
negligible. From this one can understand why there are
identical moments of inertia in 194Tl(2a) and 193Tl(1).
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Fig. 5. The calculated contributions to J (2) from each cranked proton and neutron orbital near the Fermi surface, j(2)(µ)
(the line indicated by one orbital) and j(2)(µν) (the line indicated by two orbitals). The contributions to J (2) from the blocked
orbitals are denoted by the dotted line.

It is noted that the frequency range for the set of
identical bands in Hg isotopes (h̄ω > 0.2 MeV) is higher
than that in Tl isotopes (h̄ω > 0.1 MeV). The underlying
physics is that the blocking effect on MoI is sensitive to
the Coriolis response of the blocked orbitals. For the set
of IBs in Tl isotopes, the blocked proton orbitals are the
same high-j orbital [642]5/2. The blocked neutron orbitals
in 194Tl(2a,2b) are the high-Ω orbitals [624]9/2, whose
Coriolis response is very small. So the pair of IBs in Tl is
identical in almost the whole observed frequency. For Hg
isotopes, IBs are between the yrast band and the excited
bands based on high-Ω orbitals and the values of band-
head MoI J0 are not identical due to the blocking effect.

The separate contributions to J (1) and J (2) from neu-
trons and protons are shown in fig. 4. It is seen that the
contributions from neutrons for all the six bands are simi-
lar no matter whether there are the blocked orbitals or not.
This is because the blocked orbital in 194Tl(2a,2b) is the
high-Ω orbital ([624]9/2(α = ±1/2)), the corresponding
Coriolis response is very small and the contributions to the
moment of inertia from the blocked orbital [624]9/2(α =
±1/2) in 194Tl(2a,2b) are negligible. The contributions
from protons are larger than neighboring even-even nuclei
SD bands because of the blocking effect of the single pro-
ton intruder orbital [642]5/2 (see fig. 1), which is affected
significantly by the Coriolis interaction. It is obvious that
all the six bands can be classified as two categories, two
set of IBs ({193Tl(1),194Tl(2a),194Tl(2b),195Tl(1)} and
{193Tl(2),195Tl(2)}) according to the odd proton occupy-
ing [624]9/2(α = +1/2) or [624]9/2(α = −1/2). From this
we can see that the blocked proton high-j orbital plays an
important role in the ω variation of MoI. We take 195Tl(1)
and 195Tl(2) (fig. 4(b), (e)) as an example to illustrate
it. At h̄ω < 0.3 MeV, the increase of J (2) mainly comes
from neutron’s contributions while the proton’s contribu-

tions increase at h̄ω > 0.3 MeV and become dominant at
h̄ω > 0.4 MeV because of the large contributions coming
from the high-j intruder orbital [651]1/2(α = −1/2). But
for 195Tl(2), there are neither the bands across nor the

sharp increase of the J
(2)
p contributions.

Our PNC calculations can provide more detailed in-
formation on the separate contributions to MoI from each
cranked orbital (see fig. 5), which include the direct contri-
butions j(2)(µ) from orbital µ and the interference terms
j(2)(µν) between orbitals µ and ν (see eq. (8)). It is well
known that a closed major shell has no contributions to
MoI. For SD bands in the A ∼ 190 region, neutron N ≤ 4
and proton N ≤ 3 shells are closed. Neutron N = 5
and proton N = 4 shells are not shown here for the
small constant contributions. We just display the proton
contributions of 193Tl(1,2) (fig. 5(a), (b)) and neutron
contributions of 194Tl(2a) (fig. 5(c)). As for the others,
there are almost same neutron contributions among 193Tl,
194Tl(2a,2b) and 195Tl, and similar proton contributions
among 193Tl(1), 194Tl(2a,2b) and 195Tl(1), 193Tl(2) and
195Tl(2).

It is noted that the contributions to MoI from each
cranked orbital are sensitive to the location and in par-
ticular to the Coriolis response of the orbitals µ and ν.
The orbitals far above or below the Fermi surface con-
tribute little to MoI. In contrast, the blocking of in-
truder orbitals near the Fermi surface will strongly in-
fluence the MoI. For 193Tl(1) and 195Tl(1), at h̄ω >
0.35 MeV, the sharp increase of the J (2) mainly comes
from the direct contributions j(2)(µ) of the high-j in-
truder orbitals [642]5/2 and [651]1/2 and their interference
terms j(2)([651]1/2[642]5/2), j(2)([642]5/2[633]7/2). As
for 193Tl(2) and 195Tl(2), there is no band crossing occur-
ring at h̄ω > 0.35 MeV, the contributions from the high-j
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intruder orbitals [642]5/2 and [651]1/2 and their interfer-
ence terms j(2)(µν) are small so there is no such a sharp
increase. The contributions to J (2) from the high-Ω orbital
is small and negligible while that from the high-j orbital
is important. For example, we look at the point h̄ω =
0.15 MeV, where two bands in 194Tl(2a) have very pure
configurations (see fig. 3(c)) according to the experimental
data and our calculation. The contribution coming from
blocked neutron orbital [624]9/2 is −1.7744h̄2 MeV−1

and from their interference term j(2)([624]9/2[633]7/2) is
−0.0689h̄2 MeV−1 while that coming from the blocked
proton orbital [642]5/2 is −12.1504h̄2 MeV−1 and the in-
terference term j(2)([642]5/2[651]1/2) is 2.4544h̄2 MeV−1.

4 Summary

In summary, the PNC method for treating the cranked
shell model with monopole and quadrupole pairing inter-
actions has been used to investigate the microscopic mech-
anism of the identical SD bands in the typical odd-odd nu-
cleus 194Tl and their neighbor odd-A nuclei 193,195Tl. It
is found that the blocking effect is very important and its
influence on MoI depends on the orbital location and the
Coriolis response of the blocked levels. The blocked proton
orbital [642]5/2(α = ±1/2) plays a very important role in
IBs, while the blocked neutron orbital [624]9/2(α = ±1/2)
contributes little to the MoI. The contribution from the
interference term (j(2)(µν)), which has no counterpart in
the mean-field (BCS) treatment, is very important and
cannot be negligible.
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